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In paper I [Janner (2008). Acta Cryst. A64, 494–502], the enclosing forms of the

monomers of four octahedral holoenzymes (bacterio and mitochondrial

ferritins, small heat-shock protein and sulfur oxygenase reductase) were

derived, with vertices at points of a cubic lattice and indexed accordingly. The

correspondence between vertices and neighboring residues allows a sequential

ordering of the vertices within the polyline defined by the C� atoms of the

primary structure. The alignment of these sequences shows that the form

vertices denoted as turning points delimit the elements of the secondary

structure (�-helices, �-strands and loops). This relation is analyzed further in a

plot of angular changes in orientations of the polyline segments and planes

as a function of the residue numbers and of the form vertices, respectively,

leading to an alternative characterization of the ternary structure. Finally, two

simple connectivity models of monomers, oriented according to the symmetry

axes of the octahedral point group 432, suggest possible patterns in the self-

assembly process from clusters of monomers to the quaternary structure of the

cubic cage.

1. Introduction

In paper I (Janner, 2008), polyhedral enclosing forms with

vertices at points of a form lattice have been derived for four

protein cages with octahedral symmetry: bacterio ferritin Bfr,

PDB 1nf4 (Coelho et al., 2001; Macedo et al., 2003), recom-

binant human mitochondrial ferritin rMtF, PDB 1r03

(Langlois d’Estaintot et al., 2004), sulfur oxygenase reductase

SOR, PDB 2cb2 (Urich et al., 2006) and small heat-shock

protein sHSP, PDB 1shs (Kim et al., 1998). In corresponding

views along the symmetry axes, the chains contained in the

various forms have been plotted without any further analysis,

leaving open the problem of relating form and content, which

in the present context is represented by the C� backbone of

the polypeptide chain.

To begin with, one can make a distinction between residues

well inside and those near the form boundaries, devoting

special attention to vertices. One expects that C�’s near form

vertices are closely related to the folding of the chain into its

tertiary structure. Indeed, a chain segment reaching the

boundary of the enclosing form, and vertices in particular, has

either to fold or to stop. For reasonably simple polyhedral

forms, this is a general rule only because of the observed

possibility of protruding elements.

If the vertices of the monomeric form are known, it is not

difficult to recognize a C� atom near to a vertex and to a

folding point. In a few cases, one has to make a choice between

more than one possibility. This is of no further consequence

because, in any case as already pointed out in paper I, indexed

enclosing forms require a certain degree of approximation,

which is the price to pay for the possibility of extracting the

relevant architectural elements from the structural data. In the

present case, the identification of C�’s near indexed vertices

reduces by an order of magnitude the backbone elements to

be considered, as one can see from the tables collected in

Appendix A (Tables 2, 3, 4 and 5). In order to render

graphically the relation between the two sets, the tetrameric

cap of bacterio ferritin, presented in paper I with vertices at

points of the form lattice, is shown in Fig. 1 with vertices at the

corresponding C� positions.

The bottom-to-top path followed in the present paper II is

based on this relation between indexed and occupied posi-

tions. It allows, first of all, the vertices of the monomeric

form to be ordered according to the primary structure and

chain subunits running from a vertex to the next one to be

compared with typical elements of the secondary structure

(�-helices, �-strands and loops). To the topological folds of

the tertiary structure, one can then add the metric of the

indexed vertices. Finally, the self-assembly process can be

analyzed on the basis of monomeric forms and of their

projection (the tiles) along the cubic symmetry axes, only

requiring a reduced number of C� atoms without the need

to consider the full set of residues.

The geometrical approach has a consequence because the

chemical and physical interactions are only taken into account

through the symmetry of the biologically active macro-

molecule: a possible understanding of the ‘why’ is reduced to a

phenomenological characterization of the ‘how’.



2. Secondary structures and form vertices

Monomeric form vertices, ordered according to the subse-

quent residues of the primary structure by the assignments

indicated in Tables 2, 3, 4 and 5 of Appendix A, subdivide the

monomer into chain segments which correspond to secondary

elements.

This interesting property is shown in Fig. 2 for a number of

chain segments delimited by vertices and the corresponding

secondary elements (�-helices and final loop) of chain sub-

units in a few enclosing forms of bacterio ferritin viewed along

the fourfold axis. The general case is summarized in Table 1 for

the four different monomers of Bfr, SOR, rMtF and sHSP.

From the data reported, one sees that a given secondary

structure involves one or more adjacent segments delimited by

vertices and may require a shift in the residue number at the

boundaries of the corresponding subunits. It is remarkable

that this relation appears to be independent of the fold

involved. In the case of the bacterio and mitochondrial ferri-

tins, the fold is a four �-helix bundle (Macedo et al., 2003;

Langlois d’Estaintot et al., 2004). For sulfur oxygenase

reductase, it is an �� motif with an internal � barrel

surrounded by �-helices, recalling the ferredoxin ð���Þ2
topology (Urich et al., 2006). In the case of small heat-shock

protein, it is a sandwich of �-strands (Kim et al., 1998).

3. Tertiary structure and indexed folds

The fold of a monomer into a tertiary structure is a funda-

mental biological problem investigated from so many different

point of views and on so many species that one can hardly

hope to add a new relevant element. Nevertheless, vertices of

monomeric enclosing forms (at indexed form lattice points or

at corresponding C� positions) have not yet been considered

in this context, despite the fact that these vertices imply a fold

of the enclosed polypeptide chain, are connected with

symmetry and have metrical properties, all this however in an

indirect way only. For elucidating this last aspect, consider a

monomeric form, as derived in paper I. It has been obtained

from the quaternary structure and its point-group symmetry,

but the form by itself does not have any particular symmetry,

despite the symmetry-based indexing of the vertices. From the

previous section, one already knows that part of the vertices

occurs at (or near to) transition points between secondary

elements (see Table 1) and can be regarded as turning points

of the the chain. The remaining vertices are expected to

represent bending points of the secondary elements involved.

The simplest way to express graphically these expectations

is by an alignment plot, as used for comparing residue

sequences for different species. In the spirit of the present
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Figure 2
Secondary elements of monomers viewed along the [001] axis: �1 and �3

together with the final loop of the monomers 0 and 7, respectively, and �1

and �4 of the monomer 11. The polyline segments between monomeric
form vertices (double circles) at lattice points and the delimiting residues
(filled circles) show the correspondence. The dashed line gives the
projected boundary of the monomeric forms involved.

Figure 1
Comparison of a tetrameric cap element of bacterio ferritin with vertices
of the enclosing form at cubic lattice points (empty circles and dashed
line) and at the corresponding C� positions (filled circles and thick line) in
a view along and perpendicular to the [001] axis, respectively (to be
compared with Fig. 3a of paper I).



investigation, the variation in the side chains of the residues is

disregarded and only the successive C� positions in space are

considered. Geometrically, these positions define a polyline. A

folding of the chain implies points where the polyline changes

direction. It is, therefore, natural to consider angular proper-

ties of the polyline. In particular, three successive points

Pn�1;Pn;Pnþ1 define an angle �n and a plane �n, and two

subsequent planes �n�1; �n form an angle �n between them.

More details are given in Appendix A, together with the � and

� dependencies of the C� backbone polyline of the monomers

of the four proteins considered in this paper and shown in Fig.

3 for the bacterio ferritin, in Fig. 4 for the mitochondrial

ferritin, in Fig. 5 for the small heat-shock protein and in Figs. 6

and 7 for sulfur oxygenase reductase.

The evidence gathered so far of the relation between

vertices and folding does not ensure that form vertices are the

way to group the folds of different species according to motifs

with similar properties as usually done with topological plots

of successive secondary elements. As presented in Fig. 8, with

added indexed vertices at folding positions, the bacterio and

mitochondrial ferritins have the same motif of a four �-helix

bundle. But no essentially new insight is gained. Possibly a

better way is to consider the angular and distance variations in

the polyline defined by vertices at turning points only. This is

shown for Bfr and rMtF in Fig. 9 of Appendix A, where the

secondary elements are indicated along the C� polyline. To fit

the two linear representations, the total length of both poly-

lines have been plotted as equal. In fact, they have approxi-

mately equal length. This supports the idea that the vertices at

folding positions could be used in a translation–libration–

screw analysis of the dynamical properties of monomers

(Schomaker & Trueblood, 1968), treating the intervertices

segments as rigid.

It appears difficult to extract from these plots features

common to the two similar motifs. One clearly needs more. A

statistical analysis of angular correlations in the C� polylines is

a possible issue.

4. Quaternary structure and self-assembly process
patterns

To get the quaternary structure of the biomolecule from the

monomers and the point-group symmetry of the whole, or to

get the enclosing form of the cage from the indexed mono-

meric forms, is straightforward. One simply has to apply the

point group 432 to the initial element.

The fundamental problem is to obtain the quaternary

structure and its point-group symmetry from the coordinates
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Table 1
Correspondence between secondary elements and chain segments delimited by monomeric form vertices in the bacterio ferritin Bfr, sulfur oxygenase
reductase SOR, human mitochondrial ferritin rMtF and the small heat-shock protein sHSP.

Secondary structure Chain segments Secondary structure Chain segments

Element Residues Vertices Residues Element Residues Vertices Residues

Bacterio ferritin Bfr
�1 4–41 V0–V1 4–41 �4 118–150 V10–V13 116–150
�2 42–70 V3–V5 42–70 �5 150–158 V13–V15 150–158
loop1 70–87 V5–V8 70–87 loop2 158–172 V15–V18 158–172
�3 87–116 V8-V10 87–116

Sulfur oxygenase reductase SOR
�1 5–14 V0-V1 2–16 �5 173–187 V18–V19 174–186
�1 17–34 V1-V2 16–38 �6 103–204 V20–V21 191–204
�2 40–51 V2-V3 38–57 loop4 204–214 V21–V22 204–215
loop1 51–71 V3–V5 57–70 �6 214–221 V22–V23 215–224
�3 71–80 V5–V6 70–80 loop5 221–231 V23–V24 224–228
�2 83–92 V6–V7 80–92 �0 231–233 V24– 228–
�3 94–106 V7–V9 92–106 �00 239–241 V25 241
�4 108–123 V9–V11 106–126 �7 246–250 V26–V27 244–250
loop2 123–133 V11–V12 126–131 �7 257–269 V28–V29 255–269
�4 133–142 V12–V13 131–142 �8 271–281 V30–V31 271–281
� 146–148 V14–V15 144–151 �8 281–299 V31–V33 281–299
loop3 148–160 V15–V16 151–156 �9 302–306 V33–V34 299–308
�5 160–168 V16–V17 156–171

Human mitochondrial ferritin rMtF
loop1 6–13 V0–V2 6–15 �3 95–124 V11–V13 97–125
�1 13–41 V2–V3 15–44 �4 126–159 V13–V18 125–158
�2 48–75 V4–V7 49–78 �5 165–174 V19–V22 162–176
loop2 75–95 V7–V11 78–97

Small heat-shock protein sHSP
�1 36–40 V0–V1 33–42 �7 104–110 V9–V10 102–118
�2 45–49 V1–V2 42–51 �1 117–119 V10– 118–
�3 53–59 V2–V3 51–62 �8 121–125 V11 126
�4 68–73 V4–V5 66–74 �9 129–134 V11–V12 126–137
�5 76–82 V5–V6 74–90 �2 137–139 V12– 137–
�6 90–97 V6–V8 90–98 �10 142–144 V13 147



of the monomer, even with the knowledge of the tertiary

structure, the folding motifs and the primary structure. In the

present case, this would correspond to reconstructing the cage

from the vertices of the monomeric forms, even if indexed by

the cubic form lattice, without knowing the center of rotation.

No attempt is made to solve this problem, although simpler

than the fundamental one mentioned above.

Attention is focused on the aspect of self-assembly on the

basis of all that has been derived. Two models are explored:

the connecting monomer forms (CMF) model based on

vertices shared by two or more monomeric forms, and the

connected tiles model (CTM) where connection is expressed

in terms of form vertices projected along the cubic axes.

4.1. Connected monomeric forms (CMF) model

We consider the full set of form vertices obtained by

applying the octahedral group 432 to the set of M vertices of

the monomeric form labeled by the point-group identity as can

be found in Table 4 of paper I, indicated as Table 4I. The other

tables of paper I are quoted in a similar way.

Two monomers are said to be connected if their enclosing

forms have two or more vertices in common. In the fully

connected case, all the 24 monomers are pairwise connected.

The number of shared vertices provides the rules according

to which the self-assembly process may occur. The results

presented for the four cage proteins should clarify the

approach.

Bacterio ferritin (Bfr). Each of the 24 monomers

(k ¼ 0; . . . ; 23) has an enclosing form with 19 vertices

(i ¼ 0; . . . ; 18). Some of these have the same set of indices. So,

for example, starting from V14ð0Þ ¼ ½500� (see Table 4I), one

finds

V14ð8Þ ¼ V14ð21Þ ¼ ½005� ð1Þ

(see Table 5I). Accordingly, the monomers 8 and 21 are

connected. As [005] is invariant with respect to the fourfold

rotation around [001], the full tetramer (8, 11, 21, 22) is

connected and by symmetry this is the case for all tetramers

indicated in Table 2I. The trimers are disconnected, whereas

the dimer (4, 16) has monomers with three vertices in

common:

research papers

506 Aloysio Janner � Octahedral protein cages. II Acta Cryst. (2008). A64, 503–512

Figure 4
Same angular plot as in Fig. 3 for the mitochondrial ferritin rMtF, which
has a similar four �-helix fold as bacterio ferritin.

Figure 3
Angular plot of the C� polyline as a function of the residue number n of
the bacterio ferritin monomer Bfr (with n from 1 to 172). Plotted are the
angles �n and �n (in degrees) associated with a change in direction and of
plane orientation. The position of the vertices is indicated by empty
circles. The turning points, labeled by Vk, delimit the secondary elements
in the way indicated in the PDB file (1nf4). The regions of the �-helices
are characterized by nearly constant � and � values.



V6ð4Þ ¼ V6ð16Þ ¼ ½440�;

V2ð4Þ ¼ V4ð16Þ ¼ ½24�11�; ð2Þ

V2ð16Þ ¼ V4ð4Þ ¼ ½421�:

This set of vertices is left invariant by the twofold rotation

around [110], all dimers listed in Table 2I are connected

through three vertices and, because the tetramers are also

connected by one vertex, the monomers are fully connected.

The model suggests a self-assembly pattern based on a

dimerization followed by a clustering of the dimers around the

fourfold axes in the same orientation as the tetramers. Rele-

vant in this process is the mutual orientation of the monomers

with respect to the rotational axes of 432.

Mitochondrial ferritin (rMtF). In this case, the monomeric

form has 23 vertices, as indicated in Table 4I. The tetramers

and the trimers are disconnected. The monomers 4 and 16

share their V9 vertex (indicated in Table 4I with the indices

[707]). Indeed,

V9ð4Þ ¼ V9ð16Þ ¼ ½770�: ð3Þ

Each dimer of Table 2I is therefore connected but two

different dimers are not, so this model only predicts a

dimerization and not a self-assembly pattern in the cubic cage.

Sulfur oxygenase reductase (SOR). The monomer of SOR

has about twice as many form vertices (35) as the bacterio

ferritin (19). This reflects the correspondingly larger number

of residues involved (308 in SOR and 172 in Bfr). One expects

accordingly for SOR more connecting vertices. One finds

indeed four common vertices in the tetramers, one in the

trimers and no less than six in the dimers. In particular, the

monomers 8 and 21 of the tetramer (8, 11, 21, 22) share the

following vertices:

Acta Cryst. (2008). A64, 503–512 Aloysio Janner � Octahedral protein cages. II 507

research papers

Figure 6
Same even-C� angular plot as in the previous figure for the sulfur
oxygenase reductase SOR. The general behavior of the �-strands is
similar to that in Fig. 5. That of the �-helices is more regular, as expected.
Here also, the turning-point vertices fit fairly well with the boundaries of
the secondary elements.

Figure 5
In the (�, �) angular plot of the small heat-shock protein sHSP, the C�

polyline considered is at even residue numbers only for taking the zigzag
character of the �-strands into account, which now appear associated with
fairly small � and � values. Nearly all monomeric vertices represent
turning points delimiting (more or less well) the secondary elements,
which are short.



V2ð8Þ ¼ V30ð21Þ ¼ ½225�; V12ð8Þ ¼ V28ð21Þ ¼ ½104�;

V16ð8Þ ¼ V20ð21Þ ¼ ½�1114�; V13ð8Þ ¼ V13ð21Þ ¼ ½006�:
ð4Þ

The trimer (0, 4, 8) is connected through the vertex V8:

V8ð0Þ ¼ V8ð4Þ ¼ V8ð8Þ ¼ ½222�; ð5Þ

and for the connected vertices of the dimer (4, 16) one finds:

V3ð4Þ ¼ V23ð16Þ ¼ ½23�22�; V5ð4Þ ¼ V5ð16Þ ¼ ½220�;

V16ð4Þ ¼ V17ð16Þ ¼ ½441�; V17ð4Þ ¼ V16ð16Þ ¼ ½44�11�;

V23ð4Þ ¼ V3ð16Þ ¼ ½322�; V26ð4Þ ¼ V26ð16Þ ¼ ½440�:

ð6Þ

SOR is clearly fully connected. According to this model, the

dimerization dominates the process of self-assembly in

competition with the formation of tetramers, whereas the role

of the trimers is negligible.

Small heat-shock protein (sHSP). One is back to a relatively

small number of monomeric form vertices (14), again related

to the length of the monomer (with 147 residues, for 33 of

which the position could not be determined). As in the case of

the mitochondrial ferritin, the tetramers and the trimers are

disconnected and only single dimers are connected. For

example, in the dimer (0, 12) one finds three common vertices:

V0ð0Þ ¼ V7ð12Þ ¼ ½31�11�;

V7ð0Þ ¼ V0ð12Þ ¼ ½131�;

V11ð0Þ ¼ V11ð12Þ ¼ ½330�:

ð7Þ

Again no self-assembly rules can be obtained from this model.

Therefore, as an alternative, the connected tiles model is

considered where connectivity is associated with the set of

form vertices projected along the cubic axes.

4.2. Connected tiles model (CTM)

The concept of tile as projected monomeric form along one

of the axes [001], [111] and [110] was introduced in paper I.

The indices of the projected vertices have to be expressed with

respect to the two-dimensional lattices square (s), hexagonal

(h) and rectangular (r), which are sublattices of the cubic,

hexagonal and orthorhombic lattices discussed in Appendix A

of paper I. The corresponding planar indices of a cubic lattice

point given by ½n1; n2; n3� are

½n1; n2�s

½n1 � n3; n2 � n3�h

½�n1 þ n2; n3�r

for the square lattice,

for the hexagonal lattice and

for the rectangular lattice.

Considered as connected are tiles in the same upper hemi-

sphere (in Table 3I marked by þ) sharing projected vertices
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Figure 7
The angular plot of the full C� polyline of SOR is shown, for a comparison
with the even-n plot of the previous figure.

Figure 8
Comparison of the four �-helix bundle motif in bacterio ferritin and in
mitochondrial ferritin, with the indices of the turning points.



and therefore having the same planar indices. The two cases

for which the previous CMF model failed to make a prediction

are discussed. In the remaining two cases, only the results are

quoted.

Mitochondrial ferritin (rMtF). The tetramers remain

disconnected in the tile approximation also, whereas the tiles

VI of the trimer (15, 16, 21) (see Table 3I) are connected by

the [111] projection of two vertices. In particular, for the tiles

VI(15) and VI(16), one finds

V21ð15Þ ¼ ½171�

V0ð16Þ ¼ ½393�

�
!
½111�
½06�h: ð8Þ

The tiles X of the dimer (4, 16) have their origin in common:

V9ð4Þ ¼ V9ð16Þ ¼ ½770� !
½110�
½00�r: ð9Þ

In the tile model, rMtF is fully connected and the model

predicts the formation of trimers which then cluster in the

dimeric orientations.

Small heat-shock protein (sHSP). The tiles III of the

tetramers share one vertex. In (8, 11, 21, 22), one finds for the

pair III(8), III(21)

V13ð8Þ ¼ ½0�334�

V11ð21Þ ¼ ½0�333�

�
!
½001�
½0�33�s: ð10Þ

The tiles V of the trimer (12, 19, 22) also have a common

vertex. For the pair V(12) and V(19), one has

V8ð12Þ ¼ ½32�11�
V13ð19Þ ¼ ½430�

�
!
½111�
½43�h: ð11Þ

Finally, the tiles VIII(0), VIII(12) of the dimer (0, 12) have

three projected vertices in common:

V11ð0Þ ¼ V11ð12Þ ¼ ½330� !
½110�
½00�r

V7ð0Þ ¼ V0ð12Þ ¼ ½131� !
½110�
½21�r

V0ð0Þ ¼ V7ð12Þ ¼ ½31�11� !
½110�
½�22�11�r:

ð12Þ

In this case, the connected tiles model predicts the formation

of dimers which then cluster around the fourfold and threefold

axes according to the orientations implied by the tetramers

and the trimers, respectively.

The predictions of the CTM for the bacterio ferritin and for

sulfur oxygenase reductase are consistent with those of the

CMF model. In bacterio ferritin, the tiles III(8) and III(21) of

the tetramer (8, 11, 21, 22) share the two projected vertices

½00�s from V14 and ½11�s from V12ð8Þ and V15ð21Þ. The tiles X(4)

and X(16) of the dimer (4, 16) are connected by the three

vertices V2, V4 and V6 which in [110] projections give the

lattice points ½00�r, ½2�11�r and ½�221�r, respectively. The trimeric tile

clusters remain disconnected and one is back to the predic-

tions of the CMF model. The situation is similar for SOR

where the common vertices of the tiles are the same as derived

above according to the CMF model.

5. Concluding remarks

There are two main results of this second part, where a

bottom-to-top approach has been applied to what has been

obtained in paper I in a top-to-bottom analysis.

The first new insight is that the vertices of the monomeric

form denoted as turning points delimit the elements of the

secondary structure.

The second result is represented by the possibility of

suggesting, by means of very simple models of connectivity

(CTM and CMF), suitable building blocks for the self-

assembly of single monomers to the quaternary structure of

the protein cage. Moreover, these models underline the

importance of the mutual symmetry-adapted orientation of

the monomers in the process of cluster formation. The two

models are very coarse. Even if a refinement is possible, one

has to be aware that a purely geometrical description does not

replace a physico-chemical computation of the attachment
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Figure 9
(�, �) plot for the polyline defined by the turning points indicated (V0 to
V18 and V0 to V22, respectively) as a function of the distance between
two successive vertices. The secondary elements are indicated as a
function of the residue number n, adopting the same total length as for
the polyline of the turning points. The correspondence between vertices
and residue numbers delimiting secondary elements is a characteristic
feature.



energy between the monomers responsible for the process of

self-assembly. They represent, however, an important pre-

liminary stage in the selection of the relevant orientations.

The angular plots introduced in the analysis of the tertiary

structure can also be refined by appropriate statistical

methods. The surprising element revealed by the simple plots

adopted is that the changes in chain orientation related to the

presence of form vertices, expected to be relevant for the fold

of the polypeptide chain, are of course there, but often with an

angular variation of about the same value as that occurring

between neighboring C� inside a given secondary structure.

In the views of the author, the meaning of this work is not

limited to the results obtained in the four examples consid-

ered. Its relevance is given by the derivation of a methodology

applicable to many other biomacromolecules, viral capsids in

particular, permitting predictions which, in principle at least,

can be tested and compared.

APPENDIX A
A1. Assignment of Ca positions to indexed vertices Vn of
monomeric forms

Near the boundaries of a polyhedral enclosing form

(possibly having additional protruding arms), one finds

subunits of the monomer and near form vertices one expects a

residue where the chain is obliged to stop or to fold or, at least,

to have a bend. This allows each vertex Vn to be assigned to a

given C� position and to the corresponding residue the indices

of Vn. These indices are the integral coordinates of the vertex

with respect to a basis of the form lattice, as indicated in paper

I. On the same basis, the coordinates of the selected C� are in

general not integral because they are not at lattice point

positions. Their values are indicated in the fourth column of

Tables 2, 3, 4 and 5, respectively.

The deviation between actual and fitted C� positions can be

expressed in terms of the distance dn between the indexed

vertex Vn and the corresponding C� atom, as given in Tables 2,

3, 4 and 5. In units of the cubic lattice parameter a, one finds in

all four cases similar values for the mean distance � and for

the standard deviation �, as indicated in Table 6.

A2. Angular properties of Ca polylines

The monomeric form vertices Vn and the C� of the poly-

peptide chain correspond to a set of N points

P0;P1; . . . ;Pn�1;Pn;Pnþ1; . . . ;PN�1 in space, which defines a

polyline and a sequence of vectors vn pointing from Pn to Pnþ1:

vn ¼ Pnþ1 � Pn; ð13Þ

after identification of positions with position vectors. The total

length L of the polyline is defined as the sum of the lengths jvnj

of the vectors vn:
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Table 2
Vertices of the monomeric form of bacterio ferritin Bfr.

Vertices Indices Residues C� coordinates

V0 [335] Asn4 (2.7, 2.7, 4.9)
V1 [325] Glu6 (2.6, 2.2, 4.9)
V2 [4�112] Asp41 (4.0, �0.7, 1.4)
V3 [401] Tyr42 (4.0, �0.3, 1.3)
V4 [214] Glu69 (2.1, 1.6, 4.0)
V5 [224] Leu70 (2.3, 1.7, 4.2)
V6 [404] Gln77 (3.6, 0.5, 4.0)
V7 [503] Val83 (4.6, 0.2, 2.9)
V8 [502] Ala87 (4.9, 0.0, 2.0)
V9 [423] Gln108 (3.8, 2.3, 3.4)
V10 [334] Gln116 (3.0, 2.7, 4.1)
V11 [223] Val120 (2.3, 2.3, 3.4)
V12 [511] Gly143 (4.6, 1.1, 1.2)
V13 [501] Gly150 (5.0, 0.4, 0.8)
V14 [500] Thr152 (4.7, 0.1, 0.5)
V15 [4�111] Ala158 (4.1, �0.4, 0.9)
V16 [301] Pro161 (3.3, �0.4, 1.1)
V17 [2�112] Thr166 (2.3, �0.3, 1.8)
V18 [2�113] Val172 (1.8, �1.0, 2.9)

Table 3
Vertices of the monomeric form of human mitochondrial ferritin rMtF.

Vertices Indices Residues C� coordinates

V0 [3�339] Ser6 (3.6, �3.0, 8.7)
V1 [3�338] Val8 (3.2, �3.4, 8.0)
V2 [6�448] Asp15 (6.1, �3.7, 8.0)
V3 [823] Asp44 (7.9, 2.2, 3.0)
V4 [712] Asn49 (6.8, 0.9, 2.5)
V5 [604] Leu56 (6.2, 0.0, 3.9)
V6 [5�115] Glu64 (5.0, �1.3, 5.1)
V7 [4�338] Gly78 (4.0, �2.9, 7.9)
V8 [6�118] Leu82 (5.8, �1.0, 7.6)
V9 [707] Asp84 (6.8, �0.4, 7.3)
V10 [905] Gln90 (8.6, 0.2, 5.2)
V11 [9�113] Leu97 (8.6, �0.7, 2.9)
V12 [6�557] Asp123 (6.2, �5.2, 7.1)
V13 [5�557] Gly125 (5.3, �5.3, 7.0)
V14 [5�556] Pro127 (4.8, �4.9, 6.3)
V15 [5�445] Thr135 (4.9, �3.7, 4.7)
V16 [7�334] Val142 (6.7, �3.3, 3.8)
V17 [9�222] Lys157 (9.1, �1.6, 1.4)
V18 [9�111] Met158 (8.9, �1.0, 1.2)
V19 [10,0,2] Asp162 (9.8, 0.1, 1.9)
V20 [901] Leu165 (8.7, 0.3, 1.0)
V21 [7�111] His173 (6.9, �0.5, 1.0)
V22 [602] Gly176 (6.3, �0.2, 1.6)

Table 4
Vertices of the monomeric form of small heat-shock protein sHSP.

Vertices Indices Residues C� coordinates

V0 [31�11] Thr33 (3.5, 0.5, �0.8)
V1 [321] Phe42 (2.6, 2.0, 0.4)
V2 [41�11] Asp51 (4.3, 1.4, �1.4)
V3 [331] Gly62 (2.9, 3.0, 0.5)
V4 [431] Glu66 (3.9, 2.9, 0.8)
V5 [510] Gly74 (4.5, 1.0, 0.0)
V6 [242] Glu90 (1.9, 3.8, 1.9)
V7 [131] Ile95 (1.2, 3.3, 1.0)
V8 [231] Glu98 (1.7, 2.7, 0.5)
V9 [221] Glu102 (2.5, 2.3, 1.1)
V10 [520] Glu118 (5.0, 1.8, 0.0)
V11 [330] Asn126 (3.2, 3.2, �0.2)
V12 [51�11] Glu137 (5.0, 1.0, �0.9)
V13 [40�33] Glu147 (4.3, 0.1, �3.0)



L ¼ jv0j þ jv1j þ . . .þ jvN�2j ð14Þ

and not as the distance between the first and the last point of

the polyline. The angles between two successive vectors follow

from their scalar product

�n ¼ arccos
vn�1 � vn

jvn�1jjvnj
ð15Þ

and form another sequence. Three successive points

Pn�1;Pn;Pnþ1 define a plane �n with normal vector wn

obtained by cross product of the vn’s:

wn ¼ vn�1 � vn: ð16Þ

The angle between two successive planes equals that of the

corresponding normal vectors

�n ¼ arccos
wn�1 � wn

jwn�1jjwnj
: ð17Þ

One then gets a linear representation of the � angular distri-

bution in the polyline by plotting the values of �n and of �n

along a straight line, respectively, at distances given by jvnj. In

Figs. 3, 4 and 7, the polyline is that of the C� positions, where

the small variation in length of the vectors vn has been

disregarded. In Figs. 5 and 6, the points of the polyline are

restricted to C� with even residue numbers (the restriction to

the odd numbers yields a similar plot), whereas in Fig. 9 the

polyline is that of the turning-point vertices only.

In Fig. 3 (Bfr), one recognizes the regular structure of the

�-helices with nearly constant angles, �n � 90� and �n � 50�,

and, as expected, a more irregular behavior of the � and �
values in the loop regions. At (or near to) the turning points (9

of the 19 vertices), fairly large � values are observed (corre-

sponding to change of planar directions) but, surprisingly

enough, one does not see any marked change in the � value

(which could imply a sharp change of direction). The same can

be said for most of the bending points.

Fig. 4 shows a similar behavior in mitochondrial ferritin,

confirming the validity of the analysis. In both cases, the

difference between expectation and observation enhances the

interest of the angular plot.

An angular characterization of the �-strands, which have a

predominantly zigzag structure, is more conveniently based on

the polyline formed by even (or odd) C� positions. One then

finds, as expected, small values of the � and � values

(�2n � �2n < 30�) in the �-strand regions as shown in Fig. 5 for

the small heat-shock protein. Practically all 14 vertices are

turning points because the occurring ten �-strands are short,

and so also are the two �-helices. In such an even parity plot,

the angular dependency of these vertices is in general larger

than 90�.

A similar same-parity plot of sulfur oxygenase reductase,

which has a basic ��-fold, is shown in Fig. 6. In the � regions,

the behavior is similar to the previous case, and in the �
regions one has �2n � 60� as for the polyline of the full C�

sequence, whereas now �2n � 120� instead of the 90� values

observed in Figs. 3 and 4 (consider in particular �6 and �10).

Here also as in Fig. 5, most of the vertices can be considered to

be folding points. The values for vertices at the odd-n positions

do not appear. For comparison, the plot for the full C� polyline

is given in Fig. 7.

In Fig. 9, one sees the occurrence of fairly high angular

values of about 150�.

The author thanks the Editor and the referees for their

constructive comments and for the suggested text corrections.
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